Science Editor and Publisher

Advanced search

Publish and who should perish: you or science?

Full Text:


Something is wrong with science as there is an increasing amount of unreliable, manipulated and outright faked results appearing in the literature. Here I argue that this is a direct consequence of the pay-structure and the assessment system employed in academia and it could be remedied by changing hiring, advancement, and funding criteria. Scientists are paid below average relative to their level of education, unless they are at the top or can secure grants that allow for higher salaries. Positions and grants are mostly awarded based on bibliometric numbers. Consequently, there is a strong competition to accumulate numbers of papers, impact factors, and citations. Those who can increase their value efficiently will be rewarded and the accumulation of higher values will become easier (the Matthew effect). Higher bibliometric numbers can be obtained by unethical or questionable practices, which might tempt some people. If assessments did not employ bibliometric numbers, then these practices would not have a benefit, and would fade out. Throughout the text, data from Hungary, which are similar to data from elsewhere, supplement the argument.

About the Author

Ádám Kun
1 Center for the Conceptual Foundations of Science, Parmenides Foundation 2 Evolutionary Systems Research Group, MTA Centre for Ecological Research, Hungarian Academy of Sciences 3 MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University


1. Graeber D. Of flying cars and the declining rate of profit. Baffler. 2012;(19):66–84. Available at: https://

2. Prinz F., Schlange T., Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nature Reviews Drug Discovery. 2011;(10):712. DOI: 10.1038/nrd3439-c1

3. Osherovich L. Hedging against academic risk. Science-Business eXchange. 2011;4(15):416–416. DOI: 10.1038/ scibx.2011.416

4. McNutt M. Reproducibility. Science. 2014;343(6168):229. DOI: 10.1126/science.1250475

5. Begley C. G., Ellis L. M. Raise standards for preclinical cancer research. Nature. 2012;483:531–533. DOI: 10.1038/483531a

6. Colhoun H. M., McKeigue P. M., Smith G. D. Problems of reporting genetic associations with complex outcomes. The Lancet. 2003;361(9360):865–872. DOI: 10.1016/S0140-6736(03)12715-8

7. Ioannidis J. P. A. Genetic associations: False or true? Trends Molecular Medicine. 2003;9(4):135–138. DOI: 10.1016/S1471-4914(03)00030-3

8. Estimating the reproducibility of psychological science. Science. 2015;349(6251):aac4716. DOI: 10.1126/ science.aac4716

9. Johnson V. E., Payne R. D., Wang T., Asher A., Mandal S. On the reproducibility of psychological science. Journal of the American Statistical Association. 2017;112(517):1–10. DOI: 10.1080/01621459.2016.1240079

10. Pashler H., Wagenmakers E. J. Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science. 2012;7(6):528–530. DOI: 10.1177/1745691612465253

11. Ioannidis J. P. A. Why most published research findings are false. PLoS Medicine. 2005;2(8):e124. DOI: 10.1371/journal.pmed.0020124

12. Lei L., Zhang Y. Lack of improvement in scientific integrity: An analysis of WoS retractions by Chinese researchers (1997–2016). Science and Engineering Ethics. 2017;24(5):1409–1420. DOI: 10.1007/s11948-017-9962-7

13. Ataie-Ashtiani B. Chinese and Iranian scientific publications: Fast growth and poor ethics. Science and Engineering Ethics. 2017;23(1):317–319. DOI: 10.1007/s11948-016-9766-1

14. Casadevall A., Fang F.C. Reproducible science. Infection and Immunity. 2010;78(12):4972–4975. DOI: 10.1128/ IAI.00908-10

15. Collins H.M. Tacit knowledge, trust and the Q of sapphire. Social Studies of Science. 2001;31(1):71–85. DOI: 10.1177/030631201031001004

16. Edge L. The biggest challenges facing young scientists. Cell. 2014;157(4):763–764. DOI: 10.1016/j.cell.2014.04.022

17. Waaijer C. J. F., Heyer A., Kuli S. Effects of appointment types on the availability of research infrastructure, work pressure, stress, and career attitudes of PHD Candidates of a Dutch University. Research Evaluation. 2016:25(4):349–357. DOI: 10.1093/reseval/rvw008

18. Központi Statisztikai Hivatal. A doktori fokozattal rendelkez˝ok életpályája. Stat. Tükör. 2011;(5):1–3.

19. Dany F. Mangematin V. Beyond the dualism between lifelong employment and job insecurity: Some new career promises for young scientists. Higher Education Policy. 2004;17(2):201–219. DOI: 10.1057/palgrave.hep.8300051

20. Magyarország 1989–2009: A Változások Tükrében. Budapest: Központi Statisztikai Hivatal; 2010. Available at:

21. CsécsinéMáriás E., Hagymásy T., Könyvesi T. Statistical Yearbook of Education 2013/2014. Budapest: Ministry of Human Capacities; 2015.

22. Chisholm-Burns M. A., Gatwood J., Spivey C. A., Dickey S. E. Net income of pharmacy faculty compared to community and hospital pharmacists. American Journal of Pharmaceutical Education. 2016;80(7):117. DOI: 10.5688/ ajpe807117

23. Zolas N., Goldschlag N., Jarmin R., Stephan P., Owen-Smith J., Rosen R. F., Allen B. M., Weinberg B. A., Lane J.I. Wrapping it up in a person: Examining employment and earnings outcomes for Ph.D. Recipients. Science. 2015;350(6266):1367–1371. DOI: 10.1126/science.aac5949

24. István P. Az Akadémiai Szféra és az Innováció: A Hazai FELSO˝OKTATÁS és a Gazdasági Fejlo˝dés. Budapest: Új Mandátum Könyvkiadó; 2010.

25. Munkaerő-Piaci Jellemzők (2003–2016). Budapest: Központi Statisztikai Hivatal; 2017.

26. Musselin C. European academic labor markets in transition. Higher Education. 2005;49(1–2):135–154. DOI: 10.1007/s10734-004-2918-2

27. Gábor T. Támogatott kutatócsoportok – Alulnézetből. Magy. Tud. 2009;170:481–484.

28. Merton R. K. The Matthew effect in science. Science. 1968;159(3810):56–63. DOI: 10.1126/science.159.3810.56

29. Kozak M., Bornmann L., Leydesdorff L. How have the eastern European countries of the former Warsaw pact developed since 1990? A bibliometric study. Scientometrics. 2015;102(2):1101–1117. DOI: 10.1007/s11192-014-1439-8

30. Granˇcay M., Vveinhardt J., Šumilo E. Publish or perish: How central and eastern European economists have dealt with the ever-increasing academic publishing requirements 2000–2015. Scientometrics. 2017;111(3):1813–1837. DOI: 10.1007/s11192-017-2332-z

31. Brenner S. Frederick Sanger (1918–2013). Science. 2014;343(6168):262. DOI: 10.1126/science.1249912

32. Drahl C. In names, history and legacy. Chem. Eng. News Arch. 2010;88(20):31–33. DOI: 10.1021/cenv088n020.p031

33. De Haas W. National research agendas an international comparison. In: Graaf B. D., Kan A. R., Molenaar H. (eds) The Dutch National Research Agenda in Perspective. Amsterdam: Amsterdam University Press; 2017, pp. 47–60.

34. Dutch National Research Agenda.Available at: [Accessed December 1, 2017].

35. Montagu M. F. A. Time, morphology, and neoteny in the evolution of man. American Anthropologist. 1955;57(1):13–27. DOI: 0.1525/aa.1955.57.1.02a00030

36. Brüne M. Neoteny, psychiatric disorders and the social brain: Hypotheses on heterochrony and the modularity of the mind. Anthropology & Medicine. 2000;7(3):301–318. DOI: 10.1080/713650607

37. Merton R. K. The normative structure of science. In: Merton R.K.; Storer N.W. (ed.) The Sociology of Science: Theoretical and Empirical Investigations. Chicago, IL: University of Chicago Press; 1942.

38. Macfarlane B., Cheng M. Communism, universalism and disinterestedness: Re-examining contemporary support among academics for Merton’s scientific norms. Journal of Academic Ethics. 2008;6(1):67–78. DOI: 10.1007/s10805-008-9055-y

39. Pagano M. Don’t run biomedical science as a business. Nature. 2017;547(7664):381. DOI: 10.1038/547381a

40. Reich E. S. Science publishing: The golden club. Nature. 2013;502(7471):291–293. DOI: 10.1038/502291a

41. Abritis A., McCook A. Retraction Watch. Cash bonuses for peer-reviewed papers go global. Science. 2017. DOI: 10.1126/science.aan7214

42. Franzoni C., Scellato G., Stephan P. Changing incentives to publish. Science. 2011;333(6043):702–703. DOI: 10.1126/science.1197286

43. Abbott A. Hungary rewards highly cited scientists with bonus grants. Nature. 2017;551(7681):425–426. DOI: 10.1038/551425a

44. Leyser O. The Science “Reproducibility Crisis” – and What Can Be Done about It. In The Conversation. Available at: [Accessed December 3, 2017].

45. Seife C. For Sale: “Your Name Here” in a Prestigious Science Journal.Available at: https://www.scientificamerican. com/article/for-sale-your-name-here-in-a-prestigious-science-journal/ [Accessed November 27, 2017].

46. Hvistendahl M. China’s publication bazaar. Science. 2013;342(6162):1035–1039. DOI: 10.1126/ science.342.6162.1035

47. Gorman D. M., Elkins A. D., Lawley M. A systems approach to understanding and improving research integrity. Science and Engineering Ethics. 2017. DOI: 10.1007/s11948-017-9986-z

48. Afonso A. How Academia Resembles a Drug Gang. Available at: es/2013/12/11/how-academia-resembles-a-drug-gang/ [Accessed November 27, 2017].

49. Dzeng E. How Academia and Publishing Are Destroying Scientific Innovation: A Conversation with Sydney Brenner. MD, PhD, MPH. Available at: [Accessed November 12, 2017].

50. Allison P. D., Stewart J. A. Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review. 1974;39(4):596–606. DOI: 10.2307/2094424

51. Cole S., Cole J. R. Scientific output and recognition: A study in the operation of the reward system in science. American Sociological Review. 1967;32(3):377–390. DOI: 10.2307/2091085

52. Zuckerman H. Nobel laureates in science: Patterns of productivity, collaboration, and authorship. American Sociological Review. 1967;32(3):391–403. DOI: 10.2307/2091086

53. McDonald F. 8 scientific papers that were rejected before going on to win a Nobel prize. Available at: [Accessed December 11, 2017].

54. Cheslock J. J., Callie T. M. Changing salary structure and faculty composition within business schools: Differences across sectors and state funding levels. Economics of Education Review. 2015;49:42–54. DOI: 10.1016/j. econedurev.2015.08.001

55. Robinson G. F. W. B. The 41st chair: Defining careers in the current biomedical research environment. Journal of Research Administration. 2009;40(1):213601799.

56. Merton R. K. The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis. 1988;79(1):606–623. DOI: 10.1086/354848

57. Schmidt-Dannert C., Arnold F. H. Directed evolution of industrial enzymes. Trends in Biotechnology. 1999;17(4):135–136. DOI: 10.1016/S0167-7799(98)01283-9

58. Maynard Smith J. Models of evolution. Proceedings of the Royal Society B. 1983;219(1216):315–325. DOI: 10.1098/rspb.1983.0076

59. Pásztor L., Botta-Dukát Z., Magyar G., Czárán T., Meszéna G. Theory-Based Ecology: A Darwinian Approach. Oxford, UK: Oxford University Press; 2016.

60. Ariew A., Ernst Z. What fitness can’t be. Erkenntnis. 2009;71:289–301. DOI: 10.1007/s10670-009-9183-9

61. Ariew A., Lewontin R. C. The confusions of fitness. The British Journal for the Philosophy of Science. 2004;55(2):347–363. DOI: 10.1093/bjps/55.2.347

62. Krimbas C. B. On fitness. Biology and Philosophy. 2004;19(2):185–203. DOI: 10.1023/B:BIPH.0000024402.80835.a7

63. Orr H. A. Fitness and its role in evolutionary genetics. Nature Reviews Genetics. 2009;10:531–539. DOI: 10.1038/nrg2603

64. Eigen M., Schuster P. The Hypercycle: A Principle of Natural Self-Organization. Berlin: Springer; 1979.

65. Szathmáry E. Simple growth laws and selection consequences. Trends in Ecology & Evolution. 1991;6(11):366–370. DOI: 10.1016/0169-5347(91)90228-P

66. Von Kiedrowski G., Szathmáry E. The monetary growth order. arXiv. 2012:1204.6590. Available at: https://

67. Piketty T., Saez E. Inequality in the long run. Science. 2014;344(6186):838–843. DOI: 10.1126/science.1251936

68. Piketty T. Capital in the Twenty-First Century. Cambridge, MA: Harvard University Press; 2014.

69. Gregg A. For Future Doctors. Chicago, IL: University of Chicago Press; 1957.

70. Levelt N., Drenth Committees. The Flawed Science Surrounding Diederik Stapel. Tilburg: Tilburg University; 2012.

71. Service R. F. Bell labs fires star physicist found guilty of forging data. Science. 2002;298(5591):30–31. DOI: 10.1126/science.298.5591.30

72. Timmer J. The Stem Cell Breakthrough That Wasn’t. In arsTechnica. Available at: uncategorized/2005/12/5761-2/ [Accessed December 4, 2017].

73. Kim M.-S., Kondo T., Takada I., Youn M.-Y., Yamamoto Y., Takahashi S., Matsumoto T., Fujiyama S., Shirode Y., Yamaoka I., et al. Retraction: DNA demethylation in hormone-induced transcriptional derepression. Nature. 2012;486:280. DOI: 10.1038/nature08456

74. Vastag B. Cancer fraud case stuns research community, prompts reflection on peer review process. JNCI: Journal of the National Cancer Institute. 2006;98(6):374–376. DOI: 10.1093/jnci/djj118

75. Van der Zee T., Anaya J., Brown N.J.L. Statistical heartburn: An attempt to digest four pizza publications from the Cornell food and brand lab. BMC Nutrition. 2017;3:54. DOI: 10.1186/s40795-017-0167-x

76. Lee S. M. The Inside Story of How an Ivy League Food Scientist Turned Shoddy Data into Viral Studies in BuzzFeed. Available at: [Accessed March 5, 2018].

77. Van der Zee T. The Wansink Dossier: An Overview. Available at: [Accessed March 5, 2018].

78. Extance A. Data Falsification Hits Polymer Mechanochemistry Papers.Available at: https://www.chemistryworld. com/news/data-falsification-hits-polymer-mechanochemistry-papers/8369.article [Accessed December 4, 2017].

79. Timmer J. Epic Fraud: How to Succeed in Science (without Doing Any). Available at: science/2012/07/epic-fraud-how-to-succeed-in-science-without-doing-any/ [Accessed December 4, 2017].

80. Peng R. D. Reproducible research in computational science. Science. 2011;334(6060):1226–1227. DOI: 10.1126/science.1213847

81. Vieland V. J. The replication requirement. Nature Genetics. 2001;29:244–245. DOI: 10.1038/ng1101-244

82. Fanelli D. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE. 2009;4(5):e5738. DOI: 10.1371/journal.pone.0005738

83. Statement by Three National Academies (Académie des Sciences, Leopoldina and Royal Society) on Good Practice in the Evaluation of Researchers and Research Programmes. Available at: Publications/2017/08-12-2017-royal-society-leopoldina-and-academie-des-sciences-call-for-more-support-forresearch-evaluators.pdf [Accessed December 22, 2017].

84. San Francisco Declaration on Research Assessment. Available at: [Accessed December 22, 2017].

85. Vazire S. Our obsession with eminence warps research. Nature. 2017;547(7661):7. DOI: 10.1038/547007a

86. Benedictus R., Miedema F., Ferguson M. W. J. Fewer numbers, better science. Nature. 2016;538(7626):453–455. DOI: 10.1038/538453a

87. Szilágyi A. Ingyenenergia-gép Kifejlesztésére Ítélt Meg Félmilliárd Forintnyi eu-s Támogatást a Magyar Állam. Available at: forintnyi_eu-s_tamogatast_a_magyar_allam [Accessed December 11, 2017].

88. ERC Consolidator Grants 2017 Outcome: Indicative Statistics. Available at: files/document/file/erc_2017_cog_statistics.pdf [Accessed November 28, 2017].

89. Rockey S. What Are the Chances of Getting Funded? Available at: what-are-the-chances-of-getting-funded/ [Accessed December 11, 2017].

90. Gordon R., Poulin B. J. Cost of the NSERC science grant peer review system exceeds the cost of giving every qualified researcher a baseline grant. Accountability in Research. 2009;16(1):13–40. DOI: 10.1080/08989620802689821

91. Vaesen K., Katzav J. How much would each researcher receive if competitive government research funding were distributed equally among researchers? PLoS ONE. 2017;12(9):e0183967. DOI: 10.1371/journal.pone.0183967

92. McDonald F. A Study by Maggie Simpson and Edna Krabappel Has Been Accepted by Two Scientific Journals. Available at: [Accessed December 11, 2017].

93. Neuroskeptic. Predatory Journals Hit by ‘Star Wars’ Sting. Available at: neuroskeptic/2017/07/22/predatory-journals-star-wars-sting/# [Accessed July 30, 2017].

94. Tomkins A., Zhang M., Heavlin W. D. Reviewer bias in single-versus double-blind peer review. PNAS. 2017;114(48):12708–12713. DOI: 10.1073/pnas.1707323114

For citation:

Kun Á. Publish and who should perish: you or science? Science Editor and Publisher. 2019;4(1-2):76-93. (In Russ.)

Views: 534

ISSN 2542-0267 (Print)
ISSN 2541-8122 (Online)